Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 331: 138849, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37146770

RESUMO

Electrochemical advanced oxidation processes (EAOPs) are effective for the removal of organic contaminants from groundwater. The choice of an affordable cathode material that can generate reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and hydroxyl radicals (•OH) will increase practicality and cost effectiveness of EAOPs. Carbon enriched biochar (BC), which is derived from pyrolysis of biomass, has emerged as an inexpensive and environmentally-friendly electrocatalyst for removing contaminants from groundwater. In this study, a banana peel-derived biochar (BP-BC) cathode packed in a stainless steel (SS) mesh was used in a continuous flow reactor to degrade the ibuprofen (IBP), as a model contaminant. The BP-BC cathodes generate H2O2 via a 2-electron oxygen reduction reaction, initiate the H2O2 decomposition to generate •OH, adsorb IBP from contaminated water, and oxidize IBP by formed •OH. Various reaction parameters such as pyrolysis temperature and time, BP mass, current, and flow rate, were optimized to maximize IBP removal. Initial experiments showed that H2O2 generation was limited (∼3.4 mg mL-1), resulting in only âˆ¼ 40% IBP degradation, due to insufficient surface functionalities on the BP-BC surface. The addition of persulfate (PS) into the continuous flow system significantly improves the IBP removal efficiency via PS activation. The in-situ H2O2 formation and PS activation over BP-BC cathode results in concurrent generation of •OH and sulfate anion radicals (SO4•-, a reactive oxidant), respectively, which collectively achieve âˆ¼ 100% IBP degradation. Further experiments with methanol and tertiary butanol as potential scavengers for •OH and SO4•- confirm their combined role in complete IBP degradation.


Assuntos
Musa , Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio/química , Purificação da Água/métodos , Oxirredução , Eletrodos , Poluentes Químicos da Água/análise
2.
Electrochim Acta ; 4532023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37213869

RESUMO

The fabrication of a cost-efficient cathode is critical for in-situ electrochemical generation of hydrogen peroxide (H2O2) to remove persistent organic pollutants from groundwater. Herein, we tested a stainless-steel (SS) mesh wrapped banana-peel derived biochar (BB) cathode for in-situ H2O2 electrogeneration to degrade bromophenol blue (BPB) and Congo red (CR) dyes. Furthermore, polarity reversal is evaluated for the activation of BB surface via introduction of various oxygen containing functionalities that serve as active sites for the oxygen reduction reaction (ORR) to generate H2O2. Various parameters including the BB mass, current, as well as the solution pH have been optimized to evaluate the cathode performance for efficient H2O2 generation. The results reveal formation of up to 9.4 mg/L H2O2 using 2.0 g BB and 100 mA current in neutral pH with no external oxygen supply with a manganese doped tin oxide deposited nickel foam (Mn-SnO2@NF) anode to facilitate the oxygen evolution reaction (OER). This iron-free electrofenton (EF) like process enabled by the SSBB cathode facilitates efficient degradation of BPB and CR dyes with 87.44 and 83.63% removal efficiency, respectively after 60 min. A prolonged stability test over 10 cycles demonstrates the effectiveness of polarity reversal toward continued removal efficiency as an added advantage. Moreover, Mn-SnO2@NF anode used for the OER was also replaced with stainless steel (SS) mesh anode to investigate the effect of oxygen evolution on H2O2 generation. Although Mn-SnO2@NF anode exhibits better oxygen evolution potential with reduced Tafel slope, SS mesh anode is discussed to be more cost-efficient for further studies.

3.
Res Sq ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066367

RESUMO

The electrochemical degradation of ibuprofen (IBP) by electro-Fenton process has been studied in a flow-through system by evaluating the performance of two different iron sources, sacrificial cast iron anode and FeSO4 salt. The effect of operating conditions, including initial IBP concentration, cast iron anode location, initial FeSO4 concentration, applied current, the split current on the iron anode, solution pH, and flow rate on the efficacy of the process was evaluated. The sequence of the electrodes significantly influences ibuprofen removal. When using cast iron anode as iron source, placing the iron anode upstream achieved the best IBP removal rate. Split current of 3 mA applied on the iron anode out of 120 mA total current is the optimum current for remove 1 mg/L of IBP under a flow rate of 3 mL/min. There is a linear correlation between the applied current and the Fe2+ concentration in the FeSO4-system. The initial IBP concentration does not influence the rate of Fenton reaction. Flow rate influences the degradation efficiency as high flow rate dilutes the concentration of OH radicals in the electrolyte. FeSO4-system was less affected by the flow rate compared to the iron anode-system as the concentration of the Fe2+ was steady and not diluted by the flow rate. Both systems prefer acidic operation conditions than neutral and alkaline conditions. Iron-anode can be used as an external Fe2+ supply for the treatment for iron-free. These findings contribute in several ways to our understanding of the electro-Fenton process under flow conditions and provide a basis for how to design the reactor for the water treatment.

4.
Electrochim Acta ; 4412023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36874445

RESUMO

The growing ubiquity of recalcitrant organic contaminants in the aqueous environment poses risks to effective and efficient water treatment and reuse. A novel three-dimensional (3D) electrochemical flow-through reactor employing activated carbon (AC) encased in a stainless-steel (SS) mesh as a cathode is proposed for the removal and degradation of a model recalcitrant contaminant p-nitrophenol (PNP), a toxic compound that is not easily biodegradable or naturally photolyzed, can accumulate and lead to adverse environmental health outcomes, and is one of the more frequently detected pollutants in the environment. As a stable 3D electrode, granular AC supported by a SS mesh frame as a cathode is hypothesized to 1) electrogenerate H2O2 via a 2-electron oxygen reduction reaction on the AC surface, 2) initiate decomposition of this electrogenerated H2O2 to form hydroxyl radicals on catalytic sites of the AC surface 3) remove PNP molecules from the waste stream via adsorption, and 4) co-locate the PNP contaminant on the carbon surface to allow for oxidation by formed hydroxyl radicals. Additionally, this design is utilized to electrochemically regenerate the AC within the cathode that is significantly saturated with PNP to allow for environmentally friendly and economic reuse of this material. Under flow conditions with optimized parameters, the 3D AC electrode is nearly 20% more effective than traditional adsorption in removing PNP. 30 grams of AC within the 3D electrode can remove 100% of the PNP compound and 92% of TOC under flow. The carbon within the 3D cathode can be electrochemically regenerated in the proposed flow system and design thereby increasing the adsorptive capacity by 60%. Moreover, in combination with continuous electrochemical treatment, the total PNP removal is enhanced by 115% over adsorption. It is anticipated this platform holds great promises to eliminate analogous contaminants as well as mixtures.

5.
J Environ Chem Eng ; 11(6)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38186676

RESUMO

Electrochemical water remediation technologies offer several advantages and flexibility for water treatment and degradation of contaminants. These technologies generate reactive oxidative species (ROS) that degrade pollutants. For the implementation of these technologies at an industrial scale, efficient, scalable, and cost-effective in-situ ROS synthesis is necessary to degrade complex pollutant mixtures, treat large amount of contaminated water, and clean water in a reasonable amount of time and cost. These targets are directly dependent on the materials used to generate the ROS, such as electrodes and catalysts. Here, we review the key design aspects of electrocatalytic materials for efficient in-situ ROS generation. We present a mechanistic understanding of ROS generation, including their reaction pathways, and integrate this with the key design considerations of the materials and the overall electrochemical reactor/cell. This involves tunning the interfacial interactions between the electrolyte and electrode which can enhance the ROS generation rate up to ~ 40% as discussed in this review. We also summarized the current and emerging materials for water remediation cells and created a structured dataset of about 500 electrodes and 130 catalysts used for ROS generation and water treatment. A perspective on accelerating the discovery and designing of the next generation electrocatalytic materials is discussed through the application of integrated experimental and computational workflows. Overall, this article provides a comprehensive review and perspectives on designing and discovering materials for ROS synthesis, which are critical not only for successful implementation of electrochemical water remediation technologies but also for other electrochemical applications.

6.
J Environ Chem Eng ; 10(4)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36969726

RESUMO

Efficient and steady electrogeneration of H2O2 is a significant step in the Electro-Fenton water treatment process. This study fabricates a polytetrafluoroethylene (PTFE) coated graphite felt cathode with a polydimethylsiloxane (PDMS) damp-proof coating to generate H2O2 in a flow-through system without an external oxygen supply. We evaluated the effect of PDMS content, current, flow rate, and pH on H2O2 production. PDMS coating inhibits electrowetting to extend the longevity of the modified graphite felt for electrogeneration of H2O2. However, increasing PDMS content can decrease H2O2 production due to reduction of active sites on the graphite felt. Graphite felt electrodes (surface area = 14.5 cm2) coated with 500 mg of PDMS can generate 10 mg/L of H2O2 under a flow rate of 3 mL/min with only 2% production reduction after 24-hour use. This modified graphite felt has better performance in a neutral or alkaline environment than in an acidic condition. Up to 38.5 mg/L of H2O2 will be generated at optimum current (120 mA) at the flow rate of 3 mL/min. Increasing the flow rate decreases the concentration of H2O2 in the electrolyte but enhances total production after 145 mins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...